Алюминий-самый распространненый металл в земной коре. Его содержание оценивают в 7.45 % (больше, чем железа, которого только 4.2 %). Алюми- ний как элемент открыт недавно-в 1825 г., когда были получены первые небольшие комочки этого металла. Начало его промышленного освоения от- носится к концу прошлого столетия. Толчком к этому послужила разрабо- тка в 1886 г. способа его получения путем электролиза глинозема, раст- воренного в криолите. Принцип способа лежит в основе современного про- мышленного извлечения алюминия из глинозема во всех странах мира. По внешнему виду алюминий представляет собой блестящий серебристый белый металл. На воздухе он быстро окисляется, покрываясь тонкой белой матовой пленкой Al O . Эта пленка обладает высокими защитными свойст- вами, поэтому, будучи покрытым такой пленкой, алюминий является корро- зионностойким. Алюминий достаточно легко разрушается растворами едких щелочей, со- ляной и серной кислот. В концетрированной азотной кислоте и органичес- ких кислотах он обладает высокой стойкостью. Наиболее характерными физическими свойствами алюминия является его малая относительная плотность, равная 2.7, а также сравнительно высо- кие тепло- и электропроводность. При 0 C удельная электропроводность алюминия, т.е. электропроводность алюминиевой проволоки сечением 1 мм и длиной 1 м равна 37 1 ом. Коррозионная стойкость и особенно электропроводность алюминия тем выше, чем он чище, чем меньше в нем примесей. Температура плавления алюминия невысокая, она равна приблизительно 660 C. Однако скрытая теплота плавления его очень большая-около 100 кал г, поэтому для расплавления алюминия требуется большой расход теп- ла, чем для расплавления такого же количества, например, тугоплавкой меди, у которой температура плавления 1083 C, скрытая теплота плавле- ния 43 кал г. Для механических свойств алюминия характерна большая пластичность и малая прочность. Прокатанный и отожженный алюминий имеет =10 кГ мм, а твердость НВ25, =80% и =35%. Кристаллическая решетка алюминия представляет собой гранецентриро- ванный куб, имеющий при 20 C параметр (размер стороны) 4.04 . Алло- тропических превращений алюминий не имеет.

В природе аллюминий находится в виде алюминиевых руд: бокситов, не- фелинов, алунитов и каолинов. Важнейшей рудой, на которой базируется большая часть мировой алюминиевой промышленности, являются бокситы. Получение алюминия из руд состоит из двух последовательно проводи- мых этапов-сначала производят глинозем (Al O ), а затем из него полу- чают алюминий. Известные в настоящее время методы получения глинозема можно раз- бить на три группы: щелочные, кислотные и электротермические. Наибо- лее широкое применение получили щелочные методы. В одних разновидностях щелочных методов боксит, обезвоженный при 1000 C, измельчают в шаровых мельницах, смешивают в определенных про- порциях с мелом и содой и спекают для получения растворимого в воде твердого алюмината натрия по реакции

Al O + Na CO = Al O Na O + CO .

Спекшуюся массу измельчают и выщелачивают водой, алюминат натрия при этом переходит в раствор. В других разновидностях щелочного метода глинозем, содержащийся в боксите, связывают в алюминат натрия путем непосредственной обработки руды щелочами. При этом сразу получается раствор алюмината в воде. В обоих случаях образование водного раствора алюмината натрия приво- дит к отделению его от нерастворимых компонентов руды, представляющих собой в основном окиси и гидроокиси кремния, железа и титана. Отделе- ние раствора от нерастворимого осадка, называемого красным шламом, осуществляют в отстойниках. В полученный раствор при 125 C и давлении 5 ам добавляют известь, что приводит к обескремниванию-CaSiO уходит в осадок, образуя белый шлам. Очищенный от кремния раствор после отделения его от белого шла- ма обрабатывают углекислым газом при 60-80 C, в результате чего в оса- док выпадает кристаллический гидрат окиси алюминия:

Al O Na O + 3H O + CO = 2Al(OH) + Na CO .

Его промывают, просушивают и прокаливают. Прокаливание приводит к образованию глинозема:

2Al(OH) = Al O + 3H O .

Описанный способ обеспечивает довольно полное извлечение глинозема из боксита-около 80%. Получение металлического алюминия из глинозема заключается в его электролитическом разложении на составные части-на алюминий и кисло- род. Электролитом в этом процессе является раствор глинозема в крио- лите (AlF 3NaF). Криолит, обладая способностью растворять глинозем, одновременно снижает его температуру плавления. Глинозем плавится при температуре около 2000 C, а температура плавления раствора, состояще- го, например, из 85 % криолита и 15 % глинозема, равна 935 C. Схема ээлектролиза глинозема достаточно проста, но технологически этот процесс сложный и требует больших затрат электроэнергии. В поду ванны с хорошей теплоизоляцией 1 и угольной набивкой 2 зало- жены катодные шины 3, соединенные с отрицательным полюсом источника электрического тока. К анодной шине 4 присоединены электроды 5. Перед началом электролиза на дно ванны насыпают тонкий слой кокса, электро- ды опускают до соприкосновения с ним и включают ток. Когда угольная набивка накалится, постепенно вводят криолит. При толщине слоя рас- плавленного криолита, равной 200-300 мм, загружают глинозем из расчета 15% к количеству криолита. Процесс происходит при 950-1000 C. Под действием электрического тока глинозем разлагается алюминий и кислород. Жидкий алюминий 6 скапливается на угольной подине (дно уго- льной ванны), являющейся катодом, а кислород соединяется с углеродом анодов, постепенно сжигая их. Криолит расходуется незначительно. Гли- нозем периодически добавляют, электроды для компенсации сгоревшей части постепенно опускают вниз, а накопившийся жидкий алюминий через определенные промежутки времени выпускают в ковш 8.



При электролизе на 1 т алюминия расходуется около 2 т глинозема, 0.6 т угольных электродов, служащих анодами, 0.1 т криолита и от 17000 до 18000 квт ч электроэнергии. Полученный при электролизе глинозема алюминий-сырец содержит метал- лические примеси (железо, кремний, титан и натрий), растворенные газы, главным из которых является водород, и неметаллические включения, пре- дставляющие собой частицы глинозема, угля и криолита. В таком состоя- нии он непригоден для применения, так как имеет низкие свойства, поэ- тому его обязательно подвергают рафинированию. Неметаллические и газо- образные примеси удаляют путем переплавки и продувки металла хлором. Металлические примеси можно удалить только сложными электролитическими способами. После рафинирования получают торговые сорта алюминия. Чистота алюминия является решающим показателем, влияющим на все его свойства, поэтому химический состав положен в основу классификации алюминия. Неизбежными примесями, получающимися при производстве алюминия, являются железо и кремний. Обе они в алюминии вредны. Железо не раст- воряется в алюминии, а образует с ним хрупкие химические соединения FeAl и Fe Al . С кремнием алюминий образует эвтектическую механичес- кую смесь при 11.7% Si. Поскольку растворимость кремния при комнатной температуре очень мала (0.05%), то даже при его незначительном коли- честве он образует эвтетику Fe+Si и включения очень твердых (НВ 800) хрупких кристалликов кремния, которые снижают пластичность алюминия. При совместном присутствии кремния и железа образуется тройное хими- ческое соединение и тройная эвтектика, тоже понижающие пластичность. У нас в стране в зависимости от количества примесей установлены три- надцать марок алюминия, выпускаемых промышленностью. ______________________________________________________________ | Чистота алюминия разных марок | |______________________________________________________________| | Группа | | Содержание || Группа | | Содержание | | чистоты | Марка | алюминия, %|| чистоты | Марка | алюминия, %| | | | не менее || | | не менее | |_________|_______|____________||_________|_______|____________| | Особой | | || | А85 | 99.85 | | чистоты | А999 | 99.999 || Техни- | А8 | 99.80 | |_________|_______|____________|| ческой | А7 | 99.70 | | Высокой | А995 | 99.995 || чистоты | А6 | 99.60 | | чистоты | А99 | 99.99 || | А5 | 99.50 | | | А97 | 99.97 || | А0 | 99.00 | | | А95 | 99.95 || | А | 99.00 | | | | || | АЕ | 99.50 | |_________|_______|____________||_________|_______|____________|

Контролируемыми примесями в алюминии являются железо, кремний, медь и титан. Алюминий всех марок содержит более 99 % Al. Количественное же пре- вышение этой величины в сотых или десятых долях процента указывают в названии марки после начальной буквы А. Так, в марке А85 содержится 99.85 % Al. Исключение из этого принципа маркировки составляют марки А АЕ, в которых содержание алюминия такое же, как в марках А0 и А5, но другое соотношение входящих в состав примесей железа и кремния. Буква Е в марке АЕ означает, что алюминий данной марки предназнача- ется для производства электропроводов. Дополнительным требованием к свойствам алюминия является низкое электросопротивление, которое для проволоки, изготовленной из него, должно быть не более 0.0280 ом мм м при 20 C. Алюминий применяют для производства из него изделий и сплавов на его основе, свойства которых требуют большой степени его чистоты. В зависимости от назначения алюминий можно производить в различном виде. Алюминий всех марок (высокой и технической чистоты), предназна- ченный для переплавки, отливают в виде чушек массой 5; 15 и 1000 кг. Их предельные величины следущие: высота от 60 до 600 мм, ширина от 93 до 800 мм и длина от 415 до 1000 мм. Если же алюминий предназначается для проката листа и ленты, то не- прерывным или полунепрерывным методом отливают плоские слитки семнад- цати размеров. Толщина их колеблется в пределах от 140 до 400 мм, ши- рина-от 560 до 2025 мм, а масса 1 м длины слитка-от 210 до 2190 кг. Длину слитка согласовывают с заказчиком. Основным видом контроля алюминия как в чушках, так и в плоских слит- ках, является проверка химического состава и его соответсвие марочно- му. К чушкам и слиткам, предназначенным для обработки давлением, пре- дьявляют дополнительные требования, такие, например, как отсутсвие ра- ковин, газовых пузырей, трещин, шлаковых и других посторонних включе- ний. Для раскисления стали в процессе ее выплавки, а также для производ- ства ферросплавов и для алюмотермии можно применять более дешевый алю- миний меньшей чистоты, чем это указано таблице "Чистота алюминия раз- ных марок". Для этой цели промышленность выпускает шесть марок алюми- ния в чушках массой от 3 до 16.5 кг, содержащих от 98.0 до 87.0 % Al. В них содержание железа достигает 2.5 %, а кремния и меди до 5 % каж- дого. Применение алюминия обусловлено особенностью его свойств. Сочетание легкости с достаточно высокой электропроводностью позволяет применять алюминий как проводник электрического тока, заменяя им более дорогую медь. Разницу в электропроводности меди (63 1 ом) и алюминия (37 1 ом) компенсируют увеличением сечения алюминиевого провода. Малая масса алюминиевых проводов делает возможным осуществлять их подвеску при значительно большем, чем в случае медных проводов, расстоянии между опорами, не опасаясь обрыва проводов под влиянием собственного веса. Из него изготовляют также кабели, шины, конденсаторы, выпрямители. Вы- сокая коррозионная стойкость алюминия делает его в ряде случаев неза- менимым иатериалом в химическом машиностроении, например для изготов- ления аппаратуры, применяющейся при производстве, хранении и перевозке азотной кислоты и ее производных. Широко его применяют также в пищевой промышленности-из него изготов- ляют разнообразную посуду для приготовления пищи. При этом используют не только его стойкость к действию органических кислот, но также и вы- сокую теплопроводность. Высокая пластичность позволяет раскатывать алюминий в фольгу, кото- рая в настоящее время полностью заменила применявшуюся ранее более до- рогую оловянную фольгу. Фольга служит упаковкой для самых разнообраз- ных пищевых продуктов: чая, шоколада, табака, сыра и др. Алюминий применяют так же, как антикоррозионное покрытие других ме- таллов и сплавов. Его можно наносить плакированием, диффузионной мета- ллизацией и другими способами, включая покраску алюминийсодержащими красками и лаками. Особенно сильно распространено плакирование алюми- нием плоского проката из менее коррозионноустойчивых алюминиевых спла- вов. Химическую активность алюминия по отношению к кислороду используют для раскисления при производстве полуспокойной и спокойной стали и для получения трудновосстановимых металлов путем вытеснения алюминием из их кислородных соединений. Алюминий применяют как легирующий элемент в самых различных сталях и сплавах. Он придает им специфические свойства. Так например, он повы- шает жаростойкость сплавов на основе железа, меди, титана и некоторых других металлов. Можно назвать и иные области применения алюминия различной степени чистоты, но самое большое его количество расходуют на получение раз- личных легких сплавов на его основе. Сведения о главных из них приве- дены ниже. В целом применение алюминия в различных отраслях хозяйства на приме- ре развитых капстран оценивают следущими цифрами: транспортное машино- строение 20-23% (в том числе автомобилестроение 15%), строительство 17-18%, электротехника 10-12%, производство упаковочных материалов 9-10%, производство потребительских товаров длительного пользования 9-10%, общее машиностроение 8-10%. Алюминий завоевывает все новые области применения, несмотря на кон- куренцию других материалов и особенно пластмасс. Основными промышленными рудами, содержащими алюминий, являются бок- сит, нефелин, алунит и каолин.

Качество этих руд оценивают по содержанию в них глинозема Al O , ко- торый содержит 53% Al. Из других показателей качества алюминиевых руд наиболее важным является состав примесей, вредность и полезность кото- рых определяются применением руды. Б о к с и т является лучшим и во всем мире основным сырьем для по- лучения алюминия. Его используют также для производства искусственного корунда, высокоогнеупорных изделий и для других назначений. По хими- ческому составу эта осадочная горная порода представляет собой смесь гидратов глинозема Al O nH O с окислами железа, кремния, титана и других элементов. Наиболее распространенными гидратами глинозема, вхо- дящими в состав бокситов, являются минералы: диаспор, бемит и гидрар- геллит. Содержание глинозема в боксите даже в одном месторождении ко- леблется в очень широких пределах-от 35 до 70%. Входящие в состав боксита минералы образуют очень тонкую смесь, что затрудняет обогащение. В промышленности в основном применяют сырую ру- ду. Процесс извлечения алюминия из руды сложный, очень энергоемкий и состоит из двух стадий: сначала извлекают глинозем, а затем из него получают алюминий. Предметом мировой торговли является как сам боксит, так и извлечен- ный из него или других руд глинозем. На территории СНГ залежи бокситов распределены неравномерно, и бок- ситы разных месторождений неравноценны по качеству. Месторождения наи- более высококачественных бокситов находятся на Урале. Большие запасы бокситов имеются также в Европейской части СНГ и в Западном Казахста- не. Из индустриально развитых стран ныне практически обеспечена лишь Франция, где впервые началась его разработка. Его достоверные и веро- ятные запасы в этой группе государств в 1975 г. оценивались в 4.8 млрд. т (в том числе в Австралии 4.6 млрд. т), тогда как в развиваю- щихся странах в 12.5 млрд. т, в основном в Африке и Латинской Америке (самые богатые-Гвинея, Камерун, Бразилия, Ямайка). За послевоенное время резко расширился круг стран, где ведется добы- ча боксита и производится первичный алюминий. В 1950 г. боксит добыва- ли лишь в 11 странах, не считая СССР, в том числе в трех в количестве свыше 1 млн. т (Суринам, Гайяна, США) и в четырех более по 0.1 млн. т (Франция, Индонезия, Италия, Гана). К 1977 г. обьем добычи возрос в 12 раз и резко изменилась ее география (более половины добычи капиталис- тического мира приходилось на развивающиеся страны). В отличие от развивающихся стран, богатая топливом Австралия большую часть добываемых бокситов (в основном на полуострове Иорк-в крупнейшем бокситовом месторождении мира) перерабатывает в глинозем, играя решаю- щую роль в его мировом экспорте. Не пример ей, страны бассейна Карибс- кого моря и западноафриканские вывозят преимущественно боксит. В этом сказывается как причины политического характера (мировым алюминиевым монополиям предпочтительнее производство глинозема за пределами бокси- тодобывающих, зависимых от них стран), так и чисто экономические: бок- ситы, в отличие от руд тяжелых цветных металлов, транспортабельны (со- держат 35-65 % двуокиси алюминия), а глиноземное производство требует значительных удельных расходов, которым не располагает подавляющая часть бокситодобывающих стран. Стремясь пртивостоять диктату мировых алюминиевых монополий боксито- экспортирующие страны в 1973 г. создали организацию "Международная ас- социация бокситодобывающих стран" (МАБС). В нее вошли Австралия, Гви- нея, Гайана, Ямайка, а также Югославия; позднее к ней присоединились Доминиканская республика, Гаити, Гана, Сьерра-Леоне, Суринам, а Греция и Индия стали странами-наблюдателями. На год создания на долю этих го- сударств приходилось примерно 85 % добычи бокситов в несоциалистичес- ких государствах. Для алюминиевой промышленности характерен территориальный разрыв как между добычей боксита и производством глинозема, так и между последним и выплавкой первичного алюминия. Крупнейшие производства глинозема (до 1-1.3 млн. т год) локализованы как при алюминиевых заводах (например, при канадском заводе в Арвида в Квебеке, занимающем по производствен- ной мощности-0.4 млн. т алюминия в год), так и в бокситоэкспортирующих портах (например, Паранам в Суринаме), а также на путях следования бо- ксита от вторых к первым-например в США на побережье Мексиканского за- лива (Корпус-Кристи, Пойнт-Комфорт). У нас в стране все добываемые бокситы разделены на десять марок. Ос- новное различие между бокситами разных марок состоит в том, что они содержат разное количество основного извлекаемого компонента-глинозе- ма и имеют разную величину кремниевого модуля, т.е. разное содержание глинозема к содержанию вредной в бокситах примеси кремнезема (Al O SiO ). Кремниевый модуль является очень важным показателем ка- чества бокситов, от него в сильной мере зависят их применение и тех- нология переработки. Основные показатели качества бокситов всех десяти марок приведены в таблице. Там же указано и преимущественное применение бокситов разных марок. ____________________________________________________________________ | | Содержа- | Весовое | | | Марка | ние |отношение| | | боксита | Al O ,% |Al O :SiO| Примерное назначение | | |___________|_________| | | | не менее | | |_________|_____________________|____________________________________| | БВ..... | 52 | 12.0 | Производство электрокорунда | | | | | | | Б-0.... | 52 | 10.0 | Производство глинозема, электроко- | | | | | рунда и глиноземистого цемента | | | | | | | Б-1.... | 49 | 9.0 | То же | | | | | | | Б-2.... | 46 | 7.0 | Производство глинозема, плавленых | | Б-3.... | 46 | 5.0 | огнеупоров и глиноземистых цементов| | | | | | | Б-4.... | 42 | 3.5 | Производство глинозема и огнеупо- | | Б-5.... | 40 | 2.6 | ров | | | | | | | Б-6.... | 37 | 2.1 | Производство огнеупоров, мартенов- | | | | | ское производство | | | | | | | Б-7.... | 30 | 5.6 | Производство глинозема и глиноземи-| | | | | стого цемента | | | | | | | Б-8.... | 28 | 4.0 | Производство глинозема | |_________|___________|_________|____________________________________|

Как видно из таблицы, бокситы одних и тех же марок используют для различных назначений, так например, боксит марки Б-1 может использо- ван для производства глинозема, плавленых огнеупоров и глиноземистых цементов. Однако в зависимости от назначения к бокситу одной и той же марки при одинаковых основных показателях качества (содержание Al O и кремниевом модуле) предьявляют разные требования по содержанию при- месей серы, окиси кальция и фосфора. Содержание влаги в бокситах любых марок установлено в зависимости от их месторождения: наименьшая влажность (не более 7 %) устанолена для бокситов южно-уральских месторождений, а для северо-уральских, каменск-уральских и тихвинских-соответственно не более 12, 16 и 22%. Показатель влажности не является браковочным признаком и служит то- лько для расчетов с потребителем. Боксит поставляют в кусках размером не более 500 мм. Перевозят его навалом на платформах или в гондолах. Н е ф е л и н Na(AlSiO )-минерал светло-серого или зеленоватого цвета. Твердость 5.5-6. Содержит 30-40% Al O . Используют нефелин как металлургическую руду для последовательного извлечения глинозема и алюминия, а также в химической, стекольной и кожевенной промышленно- сти. А л у н и т (квасцовый камень) KAl (SO ) (OH) -минерал белого, се- рого или красноватого цвета. Твердость 3.5-4.0. Содержит 37 % Al O . Служит для получения квасцов, глинозема и калиевых солей. К а о л и н Al O 2SiO 2H O-распространенная горная порода. По внешнему виду это белая землянистая масса, являющаяся продуктом раз- рушения кристаллических пород-гранитов, гнейсов и др. Твердость около 1, содержит 37.5 % Al O . Каолин применяют для производства фарфоро- вых и фаянсовых изделий, изоляторов, а также как наполнитель в рези- новой промышленности. Г л и н о з е м Al O является концетратом, получаемым из различ- ных алюминиевых руд. Его поставляют в виде белого кристаллического порошка. Глинозем является основным сырьем для получения металлического алю- миния. Кроме того, его используют и в других отраслях промышленности- абразивной, радио и др. У нас в стране производят глинозем восьми ма- рок, физико-химическим составом и назначением. Для производства первичного алюминия предназначен глинозем марок ГА85, ГА8, ГА6 и ГА5. Буквенная часть марок указывает на область при- менения глинозема, а цифры-на степень чистоты получаемого алюминия: это сотые и десятые доли процента сверх 99 %. Например, марка ГА85- глинозем для получения алюминия со степенью чистоты 99.85 %, а марка ГА5-то же, но со степенью чистоты 99.5 %. Для производства белого электрокорунда применяют глинозем марки ГЭ5, высокоглиноземистых огнеупоров-ГО, электроизоляционных изделий- ГК и для электровакуумной промышленности и специальных видов радиоке- рамики-ГЭВ. В глиноземах всех назначений нормируются потери при прокаливании (в разных марках от 0.4 до 1.2 %), содержание кремнезема (от 0.03 до 0.5 %), окиси железа (от 0.035 до 0.1 %) и окиси щелочных металлов (от 0.1 до 0.6 %). Влага, удаляемая при 120 C, не нормируется. Как уже сказано, по физическому состоянию глинозем имеет вид порош- ка. Особенно строгие требования по гранулометрическому составу предь- являют к глинозему марки ГЭВ, в котором частицы должны иметь округлую форму и их размер не должен превышать 3 мкм. Глинозем марок ГК и ГЭВ при поставке обязательно упаковывают в мно- гослойные бумажные мешки или в сухие мешки из плотной ткани. Перево- зят их в закрытых железнодорожных вагонах и трюмах. Глинозем осталь- ных шести марок можно упаковывать в мешки, но чаще его перевозят без тары навалом в специальных (цементовозах, цистернах и т.д.).

Прочность алюминия незначительна, поэтому для изготовления любых из- делий,предназначенных к восприятию внешних сил, применяют не чистый алюминий, а его сплавы, которых в настоящее время разработано достато- чно много марок. Введение различных легирующих элементов в алюминий существенно изме- няет его свойства, а иногда придает ему новые специфические свойства. При различном легировании повышаются прочность, твердость, приобрета- ется жаропрочность и другие свойства. При этом происходят и нежелате- льные изменения: неизбежно снижается электропроводность, во многих случаях ухудшается коррозионная стойкость, почти всегда повышается от- носительная плотность. Исключение составляет легирование марганцем, который не только не снижает коррозионную стойкость, но даже несколь- ко повышает ее, и магнием, который тоже повышает коррозионную стой- кость (если его не более 3 %) и снижает относительную плотность, так как он легче, чем алюминий. Алюминиевые сплавы по способу изготовления из них изделий делят на две группы: деформируемые и литейные. Такое деление отражает основные технологические свойства сплавов: деформируемые имеют высокую пластич- ность в нагретом состоянии, а литейные-хорошую жидкотекучесть. Для по- лучения этих свойств в алюминий вводят разные легирующие элементы и в неодинаковом количестве. Сырьем для получения сплавов обоего типа являются не только техниче- ски чистый алюминий, о котором речь шла выше, но также и двойные спла- вы алюминия с кремнием, которые содержат 10-13 % Si, и несколько отли- чаются друг от друга количеством примесей железа, кальция, титана и марганца. Общей содержание примесей в них 0.5-1.7 %. Эти сплавы назы- вают силуминами и маркируют у нас в стране СИЛ-00 (наиболее чистый по примесей), СИЛ-0, СИЛ-1 и СИЛ-2. Поставляют их в виде гладких чушек или чушек с пережимами массой 6 и 14 кг. Силумин в чушках тоже явля- ется товаром на мировом рынке. Для получения деформируемых сплавов в алюминий вводят в основном ра- створимые в нем легирующие элементы в количестве, не превышающем пре- дел их растворимости при высокой температуре. В них не должно эвтекти- ки, которая легкоплавка и резко снижает пластичность. Деформируемые сплавы при нагреве под обработку давлением должны иметь гомогенную структуру твердого раствора, обеспечивающую наиболь- шую пластичность и наименьшую прочность. Это и обусловливает их хоро- шую обрабатываемость давлением. Основными легирующими элементами в различных деформируемых сплавах является медь, магний, марганец и цинк, кроме того, в сравнительно не- больших количествах вводят также кремний, железо, никель и некоторые другие элементы. Деформируемые алюминиевые сплавы делят на упрочняемые и неупрочняе- мые. Это наименование отражает способность или неспособность сплава заметно повышать прочность при термической обработке. Структурные превращения, происходящие в алюминиевых сплавах при их термической обработке, существенно отличается от таковых в стали пото- му, что алюминий не имеет аллотропического превращения. В них повыше- ние прочности может происходить только за счет процессов, связанных с выделением из перенасыщенного в результате закалки твердого раствора каких-то упрочняющих фаз. Характерными упрочняемыми сплавами являются дюралюминии-сплавы алю- миния с медью, которые содержат постоянные примеси кремния и железа и могут быть легированы магнием и марганцем. Количество меди в них нахо- дится в пределах 2.2-7 %. Название марок дюралюминия начинается буквой Д, затем идет цифра, которая не отражает химического состава, а представляет собой просто номер. В разное время было разработано много марок дюралюминия, но многие из них не нашли широкого применения. Сейчас промышленность вы- пускает пять основных марок дюралюминия, химический состав которых приведен в таблице. ____________________________________________________________________ | | Основной химический состав, % | | Дюралюми-|_________________________________________________________| | ний | Cu | Mn | Mg | Si,не | Fe,не | | | | | | более | более | |__________|__________|__________|__________|____________|___________| | Д1...... | 3,8-4,8 | 0,4-0,8 | 0,4-0,8 | 0,7 | 0,7 | | | | | | | | | Д16..... | 3,8-4,9 | 0,3-0,9 | 1,2-1,8 | 0,5 | 0,5 | | | | | | | | | Д18..... | 2,2-3,0 |
NURBIZ.KZ - каталог компаний и предприятий Казахстана и Алматы

Алматинская Матрасная Фабрика СамСон

Ортопедический матрас "Классик" всего за 11815 тг. (кв/м)

Престижное образование и репетиторство – стоит ли делать из...

Студенческое утро добрым не бывает или как бодрит фраза «Мы...