Реферат







Министерство науки, высшей школы и технической



политики Российской Федерации.



 



Новосибирский Государственный



Технический Университет.





Реферат по исследованию операций на тему



«Метод Дэвидона - Флетчера - Пауэлла».



 



Вариант №2.



 



Факультет: АВТ.



Кафедра: АСУ.



Группа: АС-513.



Студент: Бойко Константин Анатольевич.



Преподаватель: Ренин Сергей Васильевич.



Дата: 19 октября 1997 года.



 



Новосибирск













Введение.



 



Первоначально метод был предложен Дэвидоном (Davidon [1959] ), а затем развит Флетчером и Пауэллом (Fletcher, Powell [1963] ). Метод Дэвидона - Флетчера - Пауэлла называют также и методом переменной метрики. Он попадает в общий класс квазиньютоновских процедур, в которых направления поиска задаются в виде -Djf(y). Направление градиента является, таким образом, отклоненным в результате умножения на  -Dj , где Dj - положительно определенная симметрическая матрица порядка n х n, аппроксимирующая обратную матрицу Гессе. На следующем шаге матрица Dj+1 представляется в виде суммы Dj и двух симметрических матриц ранга один каждая. В связи с этим схема иногда называется схемой коррекции ранга два.



 



Алгоритм Дэвидона - Флетчера - Пауэлла.



 



             Рассмотрим алгоритм Дэвидона - Флетчера - Пауэлла минимизации дифференцируемой функции нескольких переменных. В частности, если функция квадратичная, то, как будет показано позднее, метод вырабатывает сопряженные направления и останавливается после выполнения одной итерации, т.е. после поиска вдоль каждого из сопряженных направлений.



 



            Начальный этап.



 



Пусть >0 - константа для остановки. Выбрать точку х1 и начальную симметрическую положительно определенную матрицу D1. Положитьy1= x1, k = j = 1 и перейти к основному этапу.



           



Основной этап.



 



Шаг 1. Если çêf(yj) çê< e, то остановиться; в противном случае положить dj = - Djf(yj) и взять в качестве lj оптимальное решение задачи минимизации f(yj + ldj) при l ³ 0. Положить yj+1 = yj + ljdj. Если j < n, то перейти к шагу 2. Если j = n, то положить y1 = xk+1 = yn+1, заменить k на k+1, положить j=1 и повторить шаг 1.



 



            Шаг 2. Построить Dj+1 следующим образом :



,                                          (1)



            где



                                    pj = ljdj,                                                                                  (2)



                                    qj = f(yj+1) - f(yj).                                                              (3)



 



Заменить j на j + 1 и перейти к шагу 1.



 



 



 



 



Пример.



 



            Рассмотрим следующую задачу :



 



            минимизировать      (x1 - 2)4 + (x1 - 2x2)2.



 



Результаты вычислений методом Дэвидона - Флетчера - Пауэлла приведены в таблице 1.



 



Таблица 1.Результаты вычислений по методу Дэвидона - Флетчера - Пауэлла.



 



k

xk

f(xk)

j

yj

f(yj)

f(yj)

çêf(yj) çê

D

dj

lj

yj+1

1

(0.00, 3.00)

(52.00)

1

 

 

2

(0.00, 3.00)

(52.00)

 

(2.70, 1.51)

(0.34)

(-44.00, 24.00)

 

 

(0.73, 1.28)

 

50.12

 

 

1.47

(44.00, -24.00)

 

 

(-0.67, -1.31)

0.062

 

 

0.22

(2.70, 1.51)

 

 

(2.55, 1.22)

2

(2.55, 1.22)

(0.1036)

1

 

 

2

(2.55, 1.22)

(0.1036)

 

(2.45, 1.27)

(0.0490)

(0.89, -0.44)

 

 

(0.18, 0.36)

0.99

 

 

0.40

 

(-0.89, 0.44)

 

 

(-0.28, -0.25)

0.11

 

 

0.64

(2.45, 1.27)

 

 

(2.27, 1.11)

3

(2.27, 1.11)

(0.008)

1

 

 

2

(2.27, 1.11)

(0.008)

 

(2.25, 1.13)

(0.004)

(0.18, -0.20)

 

 

(0.04, 0.04)

0.27

 

 

0.06

(-0.18, 0.20)

 

 

(-0.05, -0.03)

0.10

 

 

2.64

(2.25, 1.13)

 

 

(2.12, 1.05)

4

(2.12, 1.05)

(0.0005)

1

 

 

2

(2.12, 1.05)

(0.0005)

 

(2.115, 1.058)

(0.0002)

(0.05, -0.08)

 

 

(0.004, 0.004)

0.09

 

 

0.006

(-0.05, 0.08)

 

0.10

(2.115, 1.058)

 



 



 



На каждой итерации вектор dj для j = 1, 2 определяется в виде
–Djf(yj), где D1 – единичная матрица, а D2 вычисляется по формулам (1) - (3). При
k = 1 имеем p1 = (2.7, -1.49)T, q1 = (44.73, -22,72)T. На второй итерации
p1 = (-0.1, 0.05)T, q1 = (-0.7, 0.8)T и, наконец, на третьей итерации
p1 = (-0.02, 0.02)T, q1 = (-0.14, 0.24)T. Точка yj+1 вычисляется оптимизацией вдоль направления dj при начальной точке yj для j = 1, 2. Процедура остановлена в точке
y2 = (2.115, 1.058)T на четвертой итерации, так как норма çêf(y2) çê= 0.006 достаточно мала. Траектория движения, полученная методом, показана на рисунке 1.



 



 



 



 



 



 



 



 



Рисунок 1.Метод Дэвидона - Флетчера - Пауэлла.





Лемма 1 показывает, что каждая матрица Dj положительно определена и dj является направлением спуска.



Для доказательства леммы нам понадобится :



Теорема 1. Пусть S - непустое множество в Еn, точка x Î cl S. Конусом возможных направлений в точке x называется множество D = {d : d ¹ 0, x + ld Î S при всех l Î (0, d) для некоторого d > 0}.



Определение.Пусть x и y - векторы из Еn и |xTy| - абсолютное значение скалярного произведения xTy. Тогда выполняется следующее неравенство, называемое неравенством Шварца : |xTy| £ ||x|| ||y||.



 



Лемма 1.



           



Пусть y1 Î Еn, а D1 – начальная положительно определенная симметрическая матрица. Для j = 1, ..., n положим yj+1 = yj + ljdj, где dj = –Djf(yj), а lj является оптимальным решением задачи минимизации f(yj + ldj) при l ³ 0. Пусть, кроме того, для
j = 1, ..., n – 1 матрица Dj+1 определяется по формулам (1) - (3). Если f(yj) ¹ 0 для
j = 1, ..., n, то матрицы D1, ..., Dn симметрические и положительно определенные, так что d1, ..., dn – направления спуска.



            Доказательство.



 Проведем доказательство по индукции. При j = 1 матрица D1 симметрическая и положительно определенная по условию леммы. Кроме того,
f(y1)Td1 = –f(y1)TD1f(y1) < 0, так как D1 положительно определена. Тогда по теореме 1 вектор d1 определяет направление спуска. Предположим, что утверждение леммы справедливо для некоторого j £ n – 1, и покажем, что оно справедливо для j+1. Пусть x – ненулевой вектор из En, тогда из (1) имеем



                                                                  (4)



 



Так как Dj – симметрическая положительно определенная матрица, то существует положительно определенная матрица Dj1/2, такая, что Dj = Dj1/2Dj1/2. Пусть
a = Dj1/2x и b = Dj1/2qj. Тогда xTDjx = aTa, qjTDjqj = bTb и xTDjqj = aTb. Подставляя эти выражения в (4), получаем :



                                                     (5)



 



            По неравенству Шварца имеем (aTa)(bTb) ³ (aTb)2. Таким образом, чтобы доказать, что xTDj+1x ³ 0, достаточно показать, что pjTqj  > 0 и bTb > 0. Из (2) и (3) следует, что



 



pjTqj = ljdjT[f(yj+1) – f(yj)].                                                                      (6)



 



            По предположениюf(yj) ¹ 0, и Dj положительно определена, так что
f(yj)TDjf(yj) > 0. Кроме того, dj – направление спуска, и, следовательно, lj  > 0. Тогда из (6) следует, что pjTqj > 0. Кроме того, qj  ¹ 0, и , следовательно, bTb= qjTDjqj  > 0.



            Покажем теперь, что xTDj+1x > 0. Предположим, что xTDj+1x = 0. Это возможно только в том случае, если (aTa)(bTb) = (aTb)2 и pjTx = 0. Прежде всего заметим, что
(aTa)(bTb) = (aTb)2 только при a = lb, т.е. Dj1/2x = lDj1/2qj. Таким образом, x =  lqj. Так как x ¹ 0, то l ¹ 0. Далее, 0 = pjTx = l pjTqj противоречит тому, что pjTqj > 0 и l ¹ 0. Следовательно, xTDj+1x > 0, т.е. матрица Dj+1 положительно определена.



            Поскольку f(yj+1) ¹ 0 и Dj+1 положительно определена, имеем
f(yj+1)Tdj+1 = –f(yj+1)T Dj+1f(yj+1) < 0. Отсюда по теореме 1 следует, что dj+1 – направление спуска.



Лемма доказана.  



Квадратичный случай.



 



          В дальнейшем нам понадобиться :



 



Теорема 2. Пусть f(x) = cTx + 1 xTHx, где Н - симметрическая матрица порядка n x n. Рассмотрим Н - сопряженные векторы d1, …, dn и произвольную точку x1. Пусть lk для k = 1, …, n - оптимальное решение задачи минимизации
f(xk + ldk) при l Î Е1 и xk+1 = xk +  ldk. Тогда для k = 1, …, n справедливы следующие утверждения :



1.   f(xk+1)Tdj = 0, j = 1, …, k;



2.   f(x1)Tdk = f(xk)Tdk;



3.   xk+1 является оптимальным решением задачи минимизации f(x) при условии
x - x1 Î L(d1, …, dk), где L(d1, …, dk) – линейное подпространство, натянутое на векторы d1, …, dk, то есть  В частности, xn+1 – точка минимума функции f на Еn.



 



            Если целевая функция f квадратичная, то в соответствии со сформулированной ниже теоремой 3 направления d1, …, dn, генерируемые методом Дэвидона - Флетчера - Пауэлла, являются сопряженными. Следовательно, в соответствии с утверждением 3 теоремы 2 метод останавливается после завершения одной итерации в оптимальной точке. Кроме того, матрица Dn+1, полученная в конце итерации, совпадает с обратной к матрице Гессе Н.



Теорема 3. Пусть Н – симметричная положительно определенная матрица порядка n x n. Рассмотрим задачу минимизации f(x) = cTx + 1 xTHx при условии x Î En. Предположим, что задача решена методом Дэвидона - Флетчера - Пауэлла при начальной точке y1 и начальной положительно определенной матрице D1. В частности, пусть lj, j = 1, …, n, – оптимальное решение задачи минимизации f(yj + ldj) при l ³ 0 и yj+1 = yj + ljdj, где dj = -Djf(yj), а Dj определяется по формулам (1) – (3). Если f(yj) ¹ 0 для всех j, то направления
d1, …, dn являются Н - сопряженными и Dn+1 = H-1. Кроме того, yn+1 является оптимальным решением задачи.



Доказательство.



Прежде всего покажем, что для j, такого, что 1 £ j £ n, справедливы следующие утверждения :



1.   d1, …, dj линейно независимы.



2.   djTHdk = 0 для i ¹ k; i, k £ j.



3.   Dj+1Hpk, или, что эквивалентно, Dj+1Hdk = dk для 1 £ k £ j, pk = lkdk.



            Проведем доказательство по индукции. Для j = 1 утверждения 1 и 2 очевидны. Чтобы доказать утверждение 3, заметим прежде всего, что для любого k справедливы равенства



Hpk = H(lkdk) = H(yk+1 - yk) = f(yk+1) –f(yk) = qk.             (7)



            В частности, Hp1 = q1. Таким образом, полагая j = 1 в (1), получаем



,



            т.е. утверждение 3 справедливо при j = 1.



            Теперь предположим, что утверждения 1, 2 и 3 справедливы для j £ n – 1. Покажем, что они также справедливы и для j + 1. Напомним, что по утверждению 1 теоремы 2 diTf(yj+1) = 0 для i £ j. По индуктивному предположению di = Dj+1Hdi, i £ j. Таким образом, для i £ j имеем



0 = diTf(yj+1) = diTHDj+1f(yj+1) = –diTHdj+1.



            Ввиду предположения индукции это равенство показывает, что утверждение 2 также справедливо для j+1.



            Теперь покажем, что утверждение 3 справедливо для j+1.



            Полагая k  £  j+1, имеем



.                          (8)



            Учитывая (7) и полагая k = j + 1 в (8), получим, что Dj+2Hpj+1 = pj+1. Теперь пусть k £ j. Так как утверждение 2 справедливо для j + 1, то



pj+1THpk = lklj+1dj+1THdk = 0.                                                            (9)



            По предположению индукции из (7) и вследствие того, что утверждение 2 справедливо для j + 1, получаем



 .                      (10)



            Подставляя (9) и (10) в (8) и учитывая предположение индукции, получаем



                        .



Таким образом, утверждение 3 справедливо для j+1.



            Осталось показать, что утверждение 1 справедливо для j+1. Предположим, что . Умножая это равенство на и учитывая, что утверждение 2 справедливо для j+1, получаем, что . По условию теоремы , а по лемме 1 матрица  положительно определена, так что . Так как H положительно определена, то  и, следовательно, . Отсюда следует, что , и так как d1, …, dj линейно независимы по предположению индукции, то  для i = 1, …, j. Таким образом, d1, …, dj+1 линейно независимы и утверждение 1 справедливо для j+1. Следовательно, утверждения 1, 2 и 3 выполняются. В частности сопряжённость d1, …, dn следует из утверждений 1 и 2, если положить j = n.



            Пусть теперь j = n в утверждении 3. Тогда  для k = 1, …, n. Если в качестве D взять матрицу, столбцами которой являются векторы d1, …, dn, то . Так как D имеет обратную, то , что возможно только в том случае, если . Наконец,  является оптимальным решением по теореме 2.



Теорема доказана.                      



 






Список литературы.



 



1. Базара М., Шетти К. «Нелинейное программирование. Теория и алгоритмы». М., 1982.



2. Химмельблау Д. «Прикладное нелинейное программирование». М., 1975.

NURBIZ.KZ - каталог компаний и предприятий Казахстана и Алматы

Российские двери

Скидка 100%

Дарим подарки каждому клиенту!

Образец резюме в Казахстане – залог отличного заработка в кармане

Потрясающие советы первокурсникам от бывших студентов – мотаем...