Министерство общего и профессионального образования Р.Ф.

Иркутский государственный технический университет.

Кафедра высшей математики.

Реферат.

Применение двойных интегралов к задачам механики и геометрии.

Выполнила: студентка

группы ТЭ-97-1

Мелкоступова С.С.



Проверил преподаватель

кафедры высшей математики

Седых Е.И.

Иркутск 1998.

Содержание.

1.Объём цилиндрического тела. Двойной интеграл.

2. Вычисление двойных интегралов.

a) примеры.

3.Приложения двойных интегралов к задачам механики.

а) масса плоской пластинки переменной плотности.

б) статические моменты и центр тяжести пластинки.

в) моменты инерции пластинки.

4.Вычисление площадей и объёмов с помощью двойных интегралов.

а) Объём.

б) Вычисление площади плоской области.

5.Вычисление площади поверхности.

а) Примеры.

1.Объём цилиндрического тела. Двойной интеграл.

Цилиндрическим телом называется тело, ограниченное плоскостью Oxy, поверхностью, с которой любая прямая, параллельная оси Oz, пересекается не более чем в одной точке, и цилиндрической поверхностью, образующая которой параллельна оси Oz.

.

Рис. 1

Обычно тело можно составить из некоторого числа цилиндрических тел и определить искомый объект как сумму объёмов цилиндрических тел, составляющих это тело.

Прежде всего напомним два принципа, из которых мы исходим при определении объёма тела:

если разбить тело на части, то его объём будет равен сумме объёмов всех частей;

объём прямого цилиндра, т.е. цилиндрического тела, ограниченного плоскостью, параллельной плоскости Oxy, равен площади основания, умноженной на высоту тела.

всюду в области D.

Рис. 2



мы будем требовать, чтобы не только площадь каждой частичной области стремилась к нулю, но чтобы стремились к нулю все ее размеры. Если назвать диаметром области наибольшее расстояние между точками ее границы (Например, диаметр прямоугольника равен его диагонали, диаметр эллипса—его большой оси. Для круга приведенное определение диаметра равносильно обычному.), то высказанное требование будет означать, что каждый из диаметров частичных областей должен стремиться к нулю; при этом сами области будут стягиваться в точку (Если известно только, что площадь области стремится к нулю, то эта область может и не стягиваться в точку. Например, площадь прямоугольника с постоянным основанием и высотой, стремящейся к нулю, стремится к нулю, а прямоугольник стягивается к своему основанию, т. е. к отрезку).

):



К отысканию предела подобных сумм для функций двух переменных приводят самые разнообразные задачи, а не только задача об объеме.

и составим сумму

(*)

, - площадь частичной области.

в области D, соответствующей данному разбиению этой области на n частичных областей.

по области D называется предел, к которому стремится n-я интегральная сумма (*) при стремлении к нулю наибольшего диаметра частичных областей.

Записывается это так:



- элементом площади, область D - областью интегрирования, наконец, переменные x и у называются переменными интегрирования.

, взятым по области, являющейся основанием цилиндрического тела:

.

Аналогично теореме существования обыкновенного интеграла имеет место следующая теорема.

Теорема существования двойного интеграла.

и от выбора в них точек Pi.

Двойной интеграл, разумеется, представляет собой число, зависящее только от подынтегральной функции и области интегрирования и вовсе не зависящее от обозначений переменных интегрирования, так что, например,

.

Далее мы убедимся а том, что вычисление двойного интеграла может быть произведено посредством двух обыкновенных интегрирований.

2.Вычисление двойных интегралов.

т.е. элемент площади в декартовых координатах является произведением дифференциалов независимых переменных. Мы имеем

. (*)

. Напомним, что мы уже занимались задачей об объёме тела, когда рассматривали применения определённого интеграла к задачам геометрии и получили формулу

(**)



Рис.3

- уравнения плоскостей, ограничивающих тело. Применим теперь эту формулу к вычислению двойного интеграла



Предположим сначала, что область интегрирования D удовлетворяет следующему условию: любая прямая, параллельная оси Ox или Oy, пересекает границу области не более чем в двух точках. Соответствующее цилиндрическое тело изображено на рис.3

Область D заключим внутрь прямоугольника



стороны которого касаются границы области в точках А, В, С, Е. Интервал [а, b] является ортогональной проекцией области D на ось Ох, а интервал [c, d] - ортогональной проекцией области D на ось Oy. На рис.5 область D показана в плоскости Оху.

Точками A и C граница разбивается на две линии: ABC и AEC, каждая из которых пересекается с любой прямой, параллельной оси Oy, в одной точке. Поэтому, их уравнения можно записать в форме, разрешенной относительно y:

(ABC),

(AEC).

Аналогично точками В и Е граница разбивается на линии ВАЕ и ВСЕ, уравнения которых можно записать так:

(BAE),

(BCE).



Рис.5

.

Следовательно, интеграл



дает выражение для площади плоского сечения PMNR. Ясно, что величина этого интеграла зависит от выбранного значения х; другими словами, площадь рассматриваемого поперечного сечения является некоторой функцией от х, мы обозначим ее через S(х):



. Основываясь на уточненном геометрическом смысле двойного интеграла, нетрудно доказать, на чем мы не будем останавливаться, что получающаяся формула для вычисления двойного интеграла будет верна для любых функций.

Заменяя в этой формуле S(x) её выражением, окончательно получим



или в более удобной форме

(А)

Пределы внутреннего интеграла переменные; они указывают границы изменения переменной интегрирования у при постоянном значении второго аргумента х. Пределы внешнего интеграла постоянны; они указывают границы, в которых может изменяться аргумент х.

, где у при интегрировании считается величиной постоянной. Интегрируя затем Q(у) в пределах изменения у, т. е. от c до d, мы придем ко второму выражению для двойного интеграла

(Б)

Здесь интегрирование совершается сначала по х, а потом по у.

.Формулы (А) и (Б) показывают, что вычисление двойного интеграла сводится к последовательному вычислению двух обыкновенных определенных интегралов; нужно только помнить, что во внутреннем интеграле одна из переменных принимается при интегрировании за постоянную. Для краткости правые части формул (А) и (Б) называют повторными (или двукратными) интегралами, а сам процесс расстановки пределов интегрирования - приведением двойного интеграла к повторному.

Формулы приведения двойного интеграла к повторному приобретают особенно простой вид, когда область D является прямоугольником со сторонами, параллельными осям координат (рис.6). В этом случае становятся постоянными пределы не только внешнего, но и внутреннего интегралов:



В других случаях для сведения двойного интеграла к повторному необходимо прежде всего построить область интегрирования; лучше всего изобразить эту область прямо в плоскости Оху, как это сделано на рис. Затем нужно установить порядок интегрирования, т. е. наметить, по какой переменной будет производиться внутреннее интегрирование, а по какой - внешнее, и расставить пределы интегрирования.

Поясним на примерах, как производится расстановка пределов интегрирования.

а) Примеры.

если область D- треугольник,



Рис. 6. Рис. 7.

ограниченный прямыми y=0, y=x и х=а (рис.7). Если интегрировать сначала по у, а потом по х, то внутреннее интегрирование производится от линии у=0 до линии у=х, а внешнее - от точки х=0 до точки х=а. Поэтому



Меняя порядок интегрирования, получим



если область D ограничена линиями у=0, у=х2 и х+у=2.

Область D, а также координаты крайних ее точек показаны на рис. 158. Вид области указывает на то, что удобнее интегрировать сначала по x, а потом по y:



Если изменим порядок интегрирования, то результат уже не удастся записать в виде одного повторного интеграла, так как линия OBA имеет на разных участках разные уравнения.



Рис.8

Разбивая область D на две : OBC и CBA, получим





Этот пример показывает, как важно с самого начала продумать порядок интегрирования.

Формулы (А) и (Б) сведения двойного интеграла к повторному справедливы и для случая областей более общего вида. Так, формула (А) применима к области, указанной на рис.9, а формула (Б) - к области, изображенной на рис.10. В случае области ещё более общего вида (Рис.11) двойной интеграл следует разбить на сумму интегралов по более простым областям, а затем каждый из них сводить отдельно к повторному, пользуясь формулами (А) и (Б).

Рассмотрим теперь несколько примеров, связанных с вычислением двойных интегралов.

Примеры. 1) Найдём двойной интеграл от функции







Геометрически I выражает объём четырёхугольной призмы



.

Возьмём повторный интеграл сначала по y, затем по x:



То же самое получим, интегрируя сначала по x, а затем по y:



2) Вычислим двойной интеграл



по области D, ограниченной линиями y=x и y=x2. Область D



изображена на рис.13. Интегрируя сначала по y, а потом по x,

получаем



Правильность результата можно проверить, изменив порядок интегрирования :





и плоскостью z=0 (рис.14,а).



с линией пересечения цилиндра z=4-y2 и плоскости z=0, т.е. с прямой y=2 (Рис. 14, б). Ввиду симметрии тела относительно плоскости Oyz вычисляем половину искомого объёма :



куб.ед.

и плоскостью Oxy.

Заданное тело представляет собой сегмент эллиптического



параболоида, расположенный над плоскостью Оху (рис.15). Параболоид пересекается с плоскостью Оху по эллипсу





т. е. по четверти эллипса. Интегрируя сначала по у, затем по х, получим



даёт





3.Приложения двойных интегралов к задачам

механики.

а) Масса плоской пластинки переменной плотности.

Рассмотрим тонкую пластинку, расположенную на плоскости Оху и занимающую область D. Толщину этой пластинки считаем настолько малой, что изменением плотности по толщине ее можно пренебречь.

Поверхностной плотностью такой пластинки в данной точке называется предел отношения массы площадки к ее площади при условии, что площадка стягивается к данной точке.

Определенная таким образом поверхностная плотность будет зависеть только от положения данной точки, т. е. являться функцией ее координат:





в выбранной точке. Составим приближенное выражение для массы пластинки в виде интегральной суммы

(*)

и каждая частичная область стягивается к точке. Тогда



б) Статические моменты и центр тяжести пластинки.

массы соответствующих частичных областей и найдем статические моменты полученной системы материальных точек :



Переходя к пределу при обычных условиях и заменяя интегральные суммы интегралами, получим



Находим координаты центра тяжести :



то формулы упрощаются :

где S - площадь пластинки.

в) Моменты инерции пластинки.

Моментом инерции материальной точки Р с массой m относительно какой-либо оси называется произведение массы на квадрат расстояния точки Р от этой оси.

:



.

В механике часто рассматривают полярный момент инерции точки, равный произведению массы точки на квадрат ее расстояния до данной точки - полюса. Полярный момент инерции пластинки относительно начала координат будет равен



4. Вычисление площадей и объёмов с помощью двойных интегралов.

а) Объём.



по области D :



Пример 1. Вычислить объем тела, ограниченного поверхностями x=0, у=0, х+у+z=1, z=0 (рис. 17).



Рис.17 Рис.18



куб. единиц.

(рис.18).

Поэтому объём V равен разности двух двойных интегралов :



или

(1)

- любые непрерывные функции, удовлетворяющие соотношению



. Предположим, что области D1 и D2 таковы, что двойные интегралы по этим областям существуют. Тогда интеграл по области D1 будет положителен и будет равен объему тела, лежащего выше плоскости Оху. Интеграл по D2 будет отрицателен и по абсолютной величине равен объему тела, лежащего ниже плоскости Оху, Следовательно, интеграл по D будет выражать разность соответствующих объемов.

б) Вычисление площади плоской области.

по области D, то эта сумма будет равна площади S,



при любом способе разбиения. Переходя к пределу в правой части равенства, получим



Если область D правильная , то площадь выразится двукратным интегралом



Производя интегрирование в скобках, имеем, очевидно,







Рис.19

Мы получили две точки пересечения



Следовательно, искомая площадь



5. Вычисление площади поверхности.

непрерывна и имеет непрерывные частные производные. Обозначим проекцию линии Г на плоскость Oxy через L. Область на плоскости Oxy, ограниченную линией L, обозначим D.

Через точку Mi проведём касательную плоскость к поверхности. Уравнение её примет вид

(1)



- стремится к нулю, мы будем называть площадью поверхности, т. е. по определению положим

(2)

угол между касательной плоскостью и плоскостью Оху.



Рис.20 Рис.21

На основании известной формулы аналитической геометрии можно написать (рис.21)



или

(3)

есть в то же время угол между осью Oz и перпендикуляром к плоскости (1). Поэтому на основании уравнения (1) и формулы аналитической геометрии имеем

Следовательно,



Подставляя это выражение в формулу (2), получим



то окончательно получаем

(4)



то соответствующие формулы для вычисления поверхности имеют вид

(3’)

(3’’)

где D’ и D’’ - области на плоскостях Oyz и Oxz, в которые проектируется данная поверхность.

а) Примеры.

сферы



(рис.22). В этом случае



Следовательно, подынтегральная функция примет вид



. Таким образом, на основании формулы (4) будем иметь



Следовательно,







Рис.22 Рис.23

; поэтому









Список использованной литературы.

А.Ф. Бермант ,И.Г. Араманович

Краткий курс математического анализа для втузов: Учебное пособие для втузов: - М.: Наука, Главная редакция физико-математической литературы , 1971 г.,736с.

Н.С. Пискунов

Дифференциальное и интегральное исчисления для втузов, Том 2:

Учебное пособие для втузов.-13-е изд. -М. :Наука, Главная редакция физико-математической литературы, 1985.-560с.



В.С. Шипачёв

Высшая математика: Учебное пособие для втузов: - М: Наука,

Главная редакция физико-математической литературы.





















Рис. 9 Рис.10 Рис.11
NURBIZ.KZ - каталог компаний и предприятий Казахстана и Алматы

Fortune

Скидка 60%

Скидка 60% на посещение бани детям с 3 до 10 лет.

0 класс в Казахстане – что непременно нужно знать

Посвящение в студенты или как испытывают сырых новичков